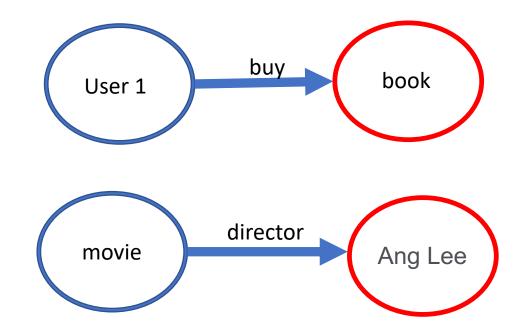
Translating Embeddings for Modeling Multi-relational Data

Advisor: Jia-Ling, Koh

Speaker: Hsiang-Hui Chou

Date:2022/10/04

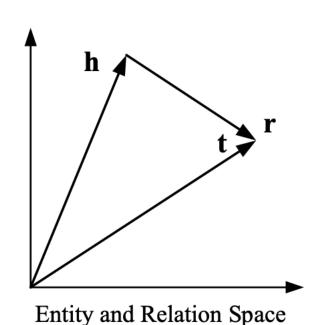

- Introduction
- Method
- Experiment
- Conclusion

Multi-relational Data

(head, label, tail) (h, l, t)

ex:

(User 1, buy, book) (movie, director, Ang Lee)

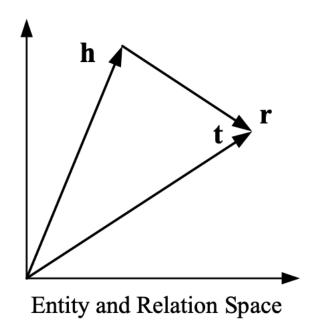


Node: entity

Edge: relationship

- Introduction
- Method
- Experiment
- Conclusion

Translation-based model



$$\mathcal{L} = \sum_{(h,\ell,t)\in S} \sum_{(h',\ell,t')\in S'_{(h,\ell,t)}} \left[\gamma + d(\boldsymbol{h}+\boldsymbol{\ell},\boldsymbol{t}) - d(\boldsymbol{h'}+\boldsymbol{\ell},\boldsymbol{t'})\right]_{+}$$

Negative triple: head or tail replaced by a random entity

$$S'_{(h,\ell,t)} = \{(h',\ell,t)|h' \in E\} \cup \{(h,\ell,t')|t' \in E\}$$

Translation-based model

$$d(\mathbf{h} + \mathbf{\ell}, \mathbf{t}) = ||\mathbf{h}||_{2}^{2} + ||\mathbf{\ell}||_{2}^{2} + ||\mathbf{t}||_{2}^{2} - 2(\mathbf{h}^{T}\mathbf{t} + \mathbf{\ell}^{T}(\mathbf{t} - \mathbf{h})).$$

$$m{h}^Tm{t} + m{\ell}^T(m{t} - m{h})$$

Algorithm 1 Learning TransE

13: end loop

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
  1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{L}}, \frac{6}{\sqrt{L}}) for each \ell \in L
                       \ell \leftarrow \ell / \|\ell\| for each \ell \in L
                       \mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{h}}, \frac{6}{\sqrt{h}}) for each entity e \in E
 4: loop
           \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity e \in E
  5:
           S_{batch} \leftarrow \text{sample}(S, b) // \text{ sample a minibatch of size } b
  6:
           T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
          for (h, \ell, t) \in S_{batch} do
  8:
               (h', \ell, t') \leftarrow \text{sample}(S'_{(h,\ell,t)}) \text{ // sample a corrupted triplet}
  9:
               T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}
10:
           end for
11:
                                                                       \sum \nabla |\gamma + d(\mathbf{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\mathbf{h'} + \boldsymbol{\ell}, \boldsymbol{t'})|_{\perp}
           Update embeddings w.r.t.
12:
                                                       ((h,\ell,t),(h',\ell,t')) \in T_{batch}
```

- Introduction
- Method
- Experiment
- Conclusion

Dataset

Table 2: Statistics of the data sets used in this paper and extracted from the two knowledge bases, Wordnet and Freebase.

Data set	WN	FB15K	FB1M
Entities	40,943	14,951	1×10^{6}
RELATIONSHIPS	18	1,345	23,382
TRAIN. EX.	141,442	483,142	17.5×10^6
VALID EX.	5,000	50,000	50,000
TEST EX.	5,000	59,071	177,404

Dataset-Wordnet

Semantic Relation	Syntactic Category	Examples
Synonymy (similar)	N, V, Aj, Av	pipe, tube rise, ascend sad, unhappy rapidly, speedily
Antonymy (opposite)	Aj, Av, (N, V)	wet, dry powerful, powerless friendly, unfriendly rapidly, slowly
Hyponymy (subordinate)	N	sugar maple, maple maple, tree tree, plant
Meronymy (part)	N	brim, hat gin, martini ship, fleet
Troponomy (manner)	V	march, walk whisper, speak
Entailment	V	drive, ride divorce, marry
Note: $N = Nouns$	Aj = Adjectives $V =$	Verbs $Av = Adverbs$

Dataset -Freebase

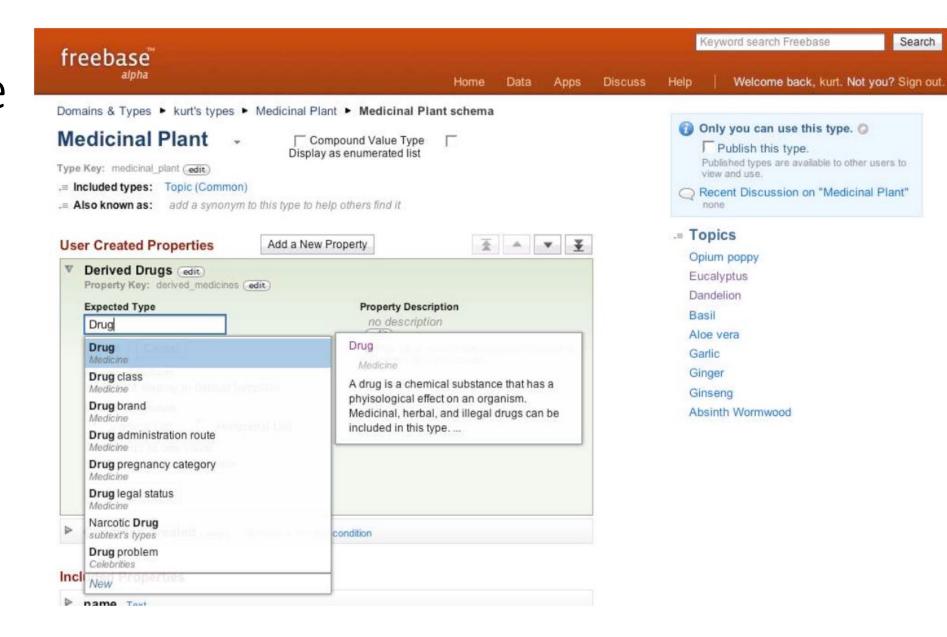


Table 1: Numbers of parameters and their values for FB15k (in millions). n_e and n_r are the nb. of entities and relationships; k the embeddings dimension.

МЕТНОО	NB. OF PARAMETERS	ON FB15K
Unstructured [2]	$O(n_e k)$	0.75
RESCAL [11]	$O(n_e k + n_r k^2)$	87.80
SE [3]	$O(n_e k + 2n_r k^2)$	7.47
SME(LINEAR) [2]	$O(n_e k + n_r k + 4k^2)$	0.82
SME(BILINEAR) [2]	$O(n_e k + n_r k + 2k^3)$	1.06
LFM [6]	$O(n_e k + n_r k + 10k^2)$	0.84
TransE	$O(n_e k + n_r k)$	0.81

Table 3: Link prediction results. Test performance of the different methods.

DATASET		WN			FB15K				FB1M		
METRIC	MEAN	RANK	HITS@	10 (%)	MEAN	RANK	HITS@	10 (%)	MEAN RANK	HITS@10(%)	
Eval. setting	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Raw	
Unstructured [2]	315	304	35.3	38.2	1,074	979	4.5	6.3	15,139	2.9	
RESCAL [11]	1,180	1,163	37.2	52.8	828	683	28.4	44.1	_	_	
SE [3]	1,011	985	68.5	80.5	273	162	28.8	39.8	22,044	17.5	
SME(LINEAR) [2]	545	533	65.1	74.1	274	154	30.7	40.8	_	_	
SME(BILINEAR) [2]	526	509	54.7	61.3	284	158	31.3	41.3	_		
LFM [6]	469	456	71.4	81.6	283	164	26.0	33.1	-	_	
TransE	263	251	75.4	89.2	243	125	34.9	47.1	14,615	34.0	

Table 4: **Detailed results by category of relationship.** We compare Hits@10 (in %) on FB15k in the filtered evaluation setting for our model, TransE and baselines. (M. stands for MANY).

TASK	PREDICTING head			PREDICTING tail				
REL. CATEGORY	1-то-1	1-то-М.	Мто-1	Мто-М.	1-то-1	1-то-М.	Мто-1	Мто-М.
Unstructured [2]	34.5	2.5	6.1	6.6	34.3	4.2	1.9	6.6
SE [3]	35.6	62.6	17.2	37.5	34.9	14.6	68.3	41.3
SME(LINEAR) [2]	35.1	53.7	19.0	40.3	32.7	14.9	61.6	43.3
SME(BILINEAR) [2]	30.9	69.6	19.9	38.6	28.2	13.1	76.0	41.8
TransE	43.7	65.7	18.2	47.2	43.7	19.7	66.7	50.0

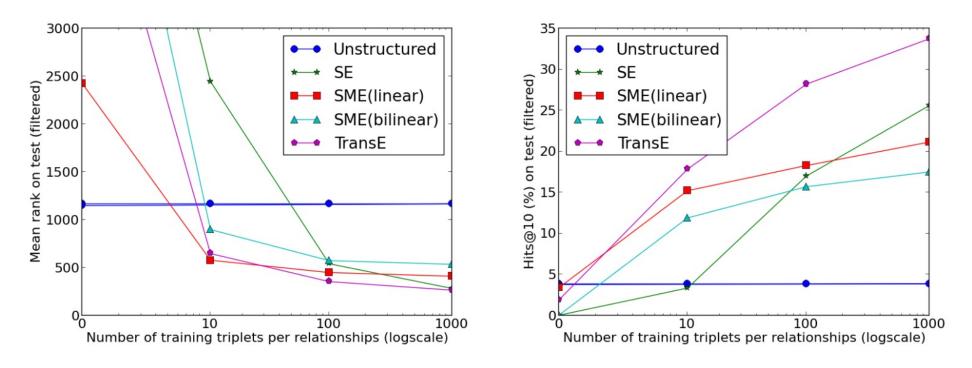


Figure 1: Learning new relationships with few examples. Comparative experiments on FB15k data evaluated in mean rank (left) and hits@10 (right). More details in the text.

Table 5: **Example predictions** on the FB15k test set using **TransE**. **Bold** indicates the test triplet's true tail and *italics* other true tails present in the training set.

INPUT (HEAD AND LABEL)	PREDICTED TAILS
J. K. Rowling influenced by	G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,
	Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, Ian Fleming
Anthony LaPaglia performed in	Lantana, Summer of Sam, Happy Feet, The House of Mirth,
	Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake
Camden County adjoins	Burlington County, Atlantic County, Gloucester County, Union County,
	Essex County, New Jersey, Passaic County, Ocean County, Bucks County
The 40-Year-Old Virgin nominated for	MTV Movie Award for Best Comedic Performance,
	BFCA Critics' Choice Award for Best Comedy,
	MTV Movie Award for Best On-Screen Duo,
	MTV Movie Award for Best Breakthrough Performance,
	MTV Movie Award for Best Movie, MTV Movie Award for Best Kiss,
	D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,
	Screen Actors Guild Award for Best Actor - Motion Picture
Costa Rica football team has position	Forward, Defender, Midfielder, Goalkeepers,
	Pitchers, Infielder, Outfielder, Center, Defenseman
Lil Wayne born in	New Orleans, Atlanta, Austin, St. Louis,
	Toronto, New York City, Wellington, Dallas, Puerto Rico
WALL-E has the genre	Animations, Computer Animation, Comedy film,
	Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama

- Introduction
- Method
- Experiment
- Conclusion

Conclusion

- proposed a new approach to learn embeddings of KBs, focusing on the minimal parametrization
- highly scalable model